# Differentiated Metabolic Effects of DA-1726, a Balanced GLP1R/GCGR Dual Agonist



# **FINANCIAL DISCLOSURES**

#### None

# BACKGROUND

- (OXM) Oxyntomodulin increases appetite suppression and energy expenditure through the GLP-1 receptor and glucagon receptor activation, ultimately inducing weight loss.
- DA-1726 is a novel OXM analogue currently being prepared for phase I clinical trials for the treatment of obesity. In previous evaluations, it exhibited excellent weight loss and equivalent or superior glycemic control efficacy compared to Semaglutide.

# OBJECTIVE

□ We evaluated the pharmacological effect of DA-1726 compared to other competitor peptides, as well as the hyperglycemic risk under low-exposure conditions.

# METHODS AND MATERIAL

### **Comparative study with Cotadutide**

DIO mice were subcutaneously injected with the vehicle or each compound daily for 10 days. Food consumption and body weight were recorded daily. After treatment, mice were fasted for 4 hours before the autopsy, and HOMA-IR values were calculated by measuring plasma insulin and glucose.

### **Comparative study with Tirzepatide**

DIO mice were subcutaneously injected with the vehicle or each compound twice a week for 4 weeks. Food consumption and body weight were recorded five times a week. After treatment, major plasma parameters were analyzed through blood chemistry analysis.

D



II-Hun Jung<sup>1</sup>, Tae-Hyoung Kim<sup>1</sup>, Su Jin Lee<sup>1</sup>, Hyung Heon Kim<sup>1,2</sup>, Mi-Kyung Kim<sup>1</sup>, <u>Yuna Chae<sup>1\*</sup></u> \* e-mail: ynchae@donga.co.kr; Dong-A ST Research Headquarter, Yongin, Republic of Korea; NeuroBo Pharmaceutical, Inc., Boston, MA, USA

### *In vivo* Hyperglycemia Risk in DIO mice

• DA-1726 was administered twice a week for 3 weeks to evaluate glucose tolerance under low exposure conditions. Then, an intraperitoneal glucose tolerance test was conducted 72 hours after the last administration.

# RESULTS

### **Efficacy Comparative Study with Cotadutide**

DA-1726 showed superior efficacy compared to Cotadutide in reducing body weight in HF-DIO mice (Figure 1A).

DA-1726 demonstrated greater efficacy than Cotadutide in improving HOMA-IR and significantly reduced plasma triglyceride levels in HF-DIO mice (Figure 1C-G).

#### BWL in Obese Mice

#### Β



HF 10 30 10 30 nmol/k

control Cotadutide DA-1726

/lean + SFM \*P<0.05 vs. HF control. One-way ANOV/





obesity mice

### Efficacy Comparative Study with Tirzepatide



All rights reserved to Dong-A ST Co., Ltd. and NeuroBo Pharmaceuticals, Inc.

Figure 1. Weight loss and metabolic effect of DA-1726 in diet-induced

Despite higher food consumption, DA-1726 demonstrated similar efficacy in weight loss compared to Tirzepatide (Figure 2A-B).

DA-1726 was more efficacious in improving plasma metabolic parameters compared to Tirzepatide, indicating differential metabolic effects caused by glucagon receptor agonism (Figure 2C).

## In vivo Hyperglycemia Risk

- DA-1726 showed no issues with glucose tolerance in the intraperitoneal glucose tolerance test performed under conditions of minimal exposure after repeated administration for 3 weeks (Figure 3A-B).
- This suggests that DA-1726 shows balanced activity under any conditions.





# CONCLUSION

- Compared to agonist, DA-1726 showed excellent body weight loss and HOMA-IR improvement in obese mice.
- **Despite consuming more food, mice on DA-1726** lost just as much weight as those on the GIP receptor and GLP-1 receptor dual agonist.
- □ Taken together, these data suggest that DA-1726 is a well-balanced GLP-1 receptor and glucagon receptor dual agonist and is expected to have effective weight loss and glycemic control in humans.

Please refer to Poster 1676-P for additional data on DA-1726







**GLP-1** receptor-biased dual

